Solu 1.	(a)	x = 9, $y = 111B1: cao (permit B1 if 2 correct answers, but transposed)2B1: cao$	B1, B1	2	
	(b)	AC DC DT ET 1B1: correct (condone one error – omission or extra) 2B1: all correct (no omissions or extras)	B2,1,0	2	
	(c)	36 1B1: cao	B1	1	
	(d)	$C_1 = 49$, $C_2 = 48$, $C_3 = 39$ 1B1: cao 2B1: cao 3B1: cao	B1, B1, B1	3	
	(e)	e.g. SAECT 1B1: A correct route (flow value of 1 given)	B1	1	
	(f)	maximum flow = minimum cut cut through DT, DC, AC and AE 1M1: Must have attempted (e) and made an attempt at a cut. 1A1: cut correct – may be drawn. Refer to max flow-min cut theorem	M1A1	2	
		three words out of fours.			[11]
2.	(a)	A walk is a finite sequence of arcs such that the end vertex of one arc is the start vertex of the next . 1B1: Probably one of the two below but accept correct relevant statement—bod gets B1, generous. 2B1: A good clear complete answer: End vertex =	B2,1,0	2	

2B1: A good clear complete answer: End vertex = start vertex + finite.

(b) A tour is a walk that visits **every vertex**, **returning to its stating vertex**.

B2,1,0 2

1B1: Probably one of the two below but accept correct relevant statement—bod gets B1, generous.

2B1: A good clear complete answer: Every vertex + return to start.

From the D1 and D2 glossaries

D1

A **path** is a finite sequence of edges, such that the end vertex of one edge in the sequence is the start vertex of the next, <u>and in which</u> no vertex appears more than once.

A **cycle** (**circuit**) is a closed path, ie the end vertex of the last edge is the start vertex of the first edge.

D2

A **walk** in a network is a finite sequence of edges such that the end vertex of one edge is the start vertex of the next.

A walk which visits every vertex, returning to its starting vertex, is called a tour.

[4]

3. (a) Total supply > total demand

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	d) $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 A 35 15 5			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	B 40 5 B 40 5 A 35 20 M1A1 $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{ c c c c c c }\hline A & 35 & 20 \\\hline B & 40 & 5 \\\hline \end{array}$	80 70 0		2	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	B 40 5 A) $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{ c c c c c c }\hline A & 35 & 20 \\\hline B & 40 & 5 \\\hline \\ d) & & 80 & 70 & 20 \\\hline \\ d) & & L & E & D \\\hline \\ 0 & A & 35 & 20 \\\hline \\ -20 & B & 40 & 5 \\\hline \\ I_{AD} = 0 - 0 - 20 = -20 \\\hline \\ I_{BL} = 60 + 20 - 80 = 0 \\\hline \\ L & E & D \\\hline \\ \end{array}$	Β 40+θ 5-θ			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	B $40 5$ B $40 5$ B $80 70 20$ M1A1 $0 \ A 35 20$ $-20 \ B 40 5$ $I_{AD} = 0 - 0 - 20 = -20$ $I_{BL} = 60 + 20 - 80 = 0$ A1 3	$\begin{array}{ c c c c c c }\hline A & 35 & 20 \\\hline B & 40 & 5 \\\hline \\ d) & & 80 & 70 & 20 \\\hline \\ d) & & & & & & & & & \\\hline M1A1 & & & & & \\\hline & & L & E & D \\\hline & & A & 35 & 20 \\\hline & & -20 & B & 40 & 5 \\\hline & I_{AD} = 0 - 0 - 20 = -20 \\\hline & I_{BL} = 60 + 20 - 80 = 0 \\\hline \end{array}$		M1		
0 A 35 20 -20 B 40 5	0 A 35 20 -20 B 40 5	B 40 5 B 70 20 M1A1	A 35 20 B 40 5 d) 80 70 20 M1A1 0 A 35 20 -20 B 40 5			3	
L E D	L E D	B 40 5 B 70 20 M1A1 L E D	A 35 20 B 40 5 d) 80 70 20 L E D	-20 B 40 5			
		B 40 5 B 80 70 20 M1A1	A 35 20 B 40 5 d) 80 70 20 M1A1	0 A 35 20			
N 80 70 20 M1A1			A 35 20		M1A1		

Stage	State	Action	Dest.	Value	
	G	GR	R	132*	
1	Н	HR	R	175*	M1A1
	I	IR	R	139*	
	D	DG	G	min(175,132) = 132	M1A1
		DH	Н	$\min(160,175) = 160*$	
2	Е	EG	G	min(162,132) = 132	
		EH	Н	min(144,175) = 144*	A1
		EI	I	min(102,139) = 102	
	F	FH	Н	min(145,175) = 145*	
		FI	I	min(210,139) = 139	
	A	AD	D	min(185,160) = 160*	
		AE	E	$\min(279,144) = 144$	M1A1ft
3	В	BD	D	min(119,160) = 119	
		BE	Е	$\min(250,144) = 144*$	A1ft
		BF	F	$\min(123,145) = 123$	
	С	CE	Е	$\min(240,144) = 144$	
		CF	F	$\min(170,145) = 145*$	
	L	LA	A	$\min(155,160) = 155*$	A1ft
4		LB	В	$\min(190,144) = 144$	
		LC	C	min(148,145) = 145	

4.

5

- 5. (a) For each row the element in column x must be less than the element in column y.
- B2,1,01 2

(b) Row minimum $\{2,4,3\}$ row maximin = 4 Column maximum $\{6,5,6\}$ column minimax = 5 $4 \neq 5$ so not stable

M1 A1

(c) Row 3 dominates row 1, so matrix reduces to

A 1	3
R1	

	M1	M2	M3
L2	4	5	6
L3	6	4	3

Let Liz play $\overline{2}$ with probability p and 3 with probability (1-p)

If Mark plays 1: Liz's gain is 4p + 6(1-p) = 6 - 2p

If Mark plays 2: Liz's gain is 5p + 4(1-p) = 4 + p

M1	
A1	

3

If Mark plays 3: Liz's gain is 6p + 3(1-p) = 3 + 3p

B2,1,0 2

4

M1A1

A1ftA1

Liz should play row 1 – never, row 2 – $\frac{2}{3}$ of the time, (d)

row $3 - \frac{1}{3}$ of the time

and the value of the game is $4\frac{2}{3}$ to her.

B1

Row 3 no longer dominates row 1 and so row 1 can not be deleted. Use Simplex (linear programming).

2 B1

[16]

6. (a) Since maximising, subtract all elements from some
$$n \ge 53$$

$$\begin{bmatrix} 1 & 0 & 7 & 7 \\ 0 & 4 & 2 & 3 \\ 2 & 0 & 5 & 5 \\ 3 & 0 & 4 & 7 \end{bmatrix}$$
 then columns
$$\begin{bmatrix} 1 & 0 & 5 & 4 \\ 0 & 4 & 0 & 0 \\ 2 & 0 & 3 & 2 \\ 3 & 0 & 2 & 4 \end{bmatrix}$$

M1

2

Minimum element 1

$$\begin{bmatrix} 0 & 0 & 4 & 3 \\ 0 & 5 & 0 & 0 \\ 1 & 0 & 2 & 1 \\ 2 & 0 & 1 & 3 \end{bmatrix}$$

M1

A1ftA1ft 3

(b)

$$\begin{bmatrix} 0 & 1 & 4 & 3 \\ 0 & 6 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 0 & 3 & 2 \\ 1 & 6 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 2 & 0 & 0 & 2 \end{bmatrix}$$

M1A1ft 2	,
----------	---

M1A1 2

Joe	A	Α
Min-Seong	C	D
Olivia	D	В
Robert	В	С

Value £197 000

- 7. GH(38) GF(56) CA(57) EC(59) FE(61) CD(64) CB(68) (a)
- M1A1ft 2

(b) $2 \times 403 = 806 \text{ (km)}$ B1

1

e.g. DH saves 167 (c) AB saves 23

M1A1

 $806 - 190 = 616 \, (km)$

A1

- **A**1
- eg A B C E F G H D C A (d) C E F G Η D Α 68 + 57 + 98 + 61 + 56 + 38 + 111 + 108 = 597 (km)
- M1A1

В

A1 3

Delete C (e)

M1A1M1A1ft4

RMST weight = 444(f) Lower bound = 444 + 59 + 57 = 560 (km) $560 < length \le 597$

B2,1,0 2

[16]

8. (a)

b.v.	х	у	Z	R	S	t	Value
r	4	$\frac{7}{3}$	$\frac{5}{2}$	1	0	0	64
S	1	3	0	0	1	0	16
t	4	2	2	0	0	1	60
P	-5	$-\frac{7}{2}$	-4	0	0	0	0

b.v.	Х	у	Z	R	S	t	Value	Row ops
r	0	$\frac{1}{3}$	$\frac{1}{2}$	1	0	-1	4	R_1-4R_3
S	0	$\frac{5}{2}$	$-\frac{1}{2}$	0	1	$-\frac{1}{4}$	1	$R_2 - R_3$
х	1	$\frac{1}{2}$	$\frac{1}{2}$	0	0	$\frac{1}{4}$	15	$R_3 \div 4$
P	0	-1	$-\frac{3}{2}$	0	0	$\frac{5}{4}$	75	$R_4 + 5R_3$

b.v.	х	у	Z	R	S	t	Value	Row ops
z	0	$\frac{2}{3}$	1	2	0	-2	8	$R_1 \div \ \frac{1}{2}$
S	0	17 6	0	1	1	$-\frac{5}{4}$	5	$R_2 + \frac{1}{2}$ R_1
x	1	$\frac{1}{6}$	0	-1	0	$\frac{5}{4}$	11	$R_3 - \frac{1}{2}$ R_1
P	0	0	0	3	0	$-\frac{7}{4}$	87	$R_4 + \frac{3}{2}$ R_1

M1A1ft

M1A1 9

M1A1

M1A1ftA1

(b) There is still negative numbers in the profit row.

B1 1